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ABSTRACT. A capital issue in roll-gap control for rolling mill plants is the difficulty to
measure the output thickness without including time delays in the control loop. Time delays
are a consequence of the possible locations for the output thickness sensor which is usually
located some distance away from the roll gap. In this work, a new model-based predictive
control law is proposed. The new scheme is a neural network based  predictive control
structure which is applied to roll-gap control with outstanding results. It is shown that the
neural network based predictive control permits to overcome the existing time delays in the
system dynamics. The proposed  scheme implements a virtual thickness sensor which releases
an accurate estimate of the actual output thickness. It is shown that the dynamic response of
the rolling mill system can be substantially improved by using the proposed controller.
Simulation results are presented to illustrate the controller performance.
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1. INTRODUCTION

The development of new Automatic Gage Control (AGC) systems represents an
important research field in the metallurgic industry. AGC systems vary as much in form as in
complexity as do rolling mill configurations. Basically, AGC are non predictive feedback
control schemes applied to rolling mill systems to achieve output strip thickness
specifications.



In most cases an output thickness measurement is used as the feedback variable. Two
techniques have been extensively used to evaluate output thickness deviations from its set
point:
•  The first one includes a sensor located after the roll gap. This approach causes a time

delay in the feedback system and produces a significant deterioration in the control
performance.

•  The second technique consists in calculating the output thickness from measurements of
the roll load. This has a problem when working with thin strips, because variation in the
strip thickness has little effect on the measured roll load.
The technique proposed here does not follow any of the classical approaches, but instead

of that it uses direct gap measurements and a neural network based predictive model to
implement the control law (Smith, 1957).

Also, since the proposed technique is based on direct gap measurements, it permits to
achieve the required control accuracy and performance. The implementation of a neural
network based predictive model as a virtual output thickness sensor comes to fulfill the need
for computational speed required for any on-line closed loop control.

Some relevant contributions in the area of control application of neural networks are the
papers from Andersen et al (1992), Guez et al (1988), Hunt et al (1992), Khalid and  Omatu
(1992), Sbarbaro et al (1993), Smartt (1992), Tai et al (1992), and Yamada and Yabuta
(1993).

Predictive control algorithms were initially developed in the industrial environment as
computer-based control systems. Important reviews on predictive control have been published
by Garcia et al (1989), Ricker (1991), Morari et al (1991), Muske et al (1993) and Rawlings
et al (1994). Although, the predictive control area still lacks of a solid theoretical foundation,
some important theoretical contributions can be found in the works from Lee et al (1994) and
Mayne (1996).

In Section 2, a review of a neural network based model as proposed in [11} is presented.
In Section 3 the proposed control scheme is introduced and discussed. In Section 4,
simulation  results for a rolling mill stand are presented. In Section 5 conclusions are
established. And finally, in Sections 6 and 7, the paper references and notation are
respectively presented.

2. A NEURAL NETWORK  BASED MODEL

Predictive control algorithms are currently applied to many industrial processes.
Originally, they were applied to power plants and oil refineries. Currently predictive control
applications have been spread out to a large variety of industrial cases such as metallurgic
industries, chemical plants, and food processing. In the industrial control environment the
term "predictive control" refers to a wide diversity of control topologies. Nevertheless, a
common strategy in this case is to use an accurate plant model to estimate future values of the
plant output and use these estimates to perform the suitable corrections of the plant set point.
In general, these schemes work in open loop.

Analytic models are usually developed having accuracy as the main objective and in
general they are not appropriated for on-line closed loop control implementation. Such is the
case of the well accepted Alexander's model for rolling mill plants. Alexander's model has
proved to be an accurate model for simulation purposes but it requires too much
computational effort and so it is inadequate for closed loop control.



In the case of rolling mill processes, a regular approach is to calibrate the system using a
quite large and complete data base such as a lookup table and then run the process in open
loop. Usually, the results are just good enough to meet steady state performance
specifications.

In order to implement a roll-gap closed loop predictive control a numerically fast model
has to be used, however, none of the existing analytical models are able to keep accuracy and
be fast enough for closed loop control purposes.

An automatic gauge control (AGC) system for rolling mills  utilizes the output thickness
as the feedback variable. Usually the thickness sensor is place too far from the roll-gap, and
this causes a time delay in the feedback control loop which also depends on the strip speed.

Several rolling models have been proposed in the literature which in general are non
linear functions of several variables of the following form:
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A linear form for Equation 1 can be written as
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The strip output thickness can be computed from the elasticity equation as
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From Equation 2 and 4
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The partial derivatives in Equations 2 and 5 are known as sensitivity coefficients. It can
be observed that they  correspond to the linear terms of the multivariable Taylor's series
expansion of the function.

Equation 5 can be written as:
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and also

[ ]

























−



























=

























∆
∆
∆
∆
∆
∆

=∆

y

t

t

h

g

y

t

t

h

g

y

t

t

h

g

u
f

r

i

f

r

i

f

r

i

µµµ
*

*

*

*

*

*

(10)

It should be noticed that Equations 5, 6 and 7 can be used to determine an estimate value,

oĥ , for the output thickness, oh , given the gap variation, rolling parameters and sensitivity

coefficients. Traditionally, the sensitivity coefficients in matrix [S] (Equation 9) are usually
determined by solving a system of nonlinear equations, such is the case of the Alexander’s
model  for rolling processes (Alexander, 1972). Alternatively, Zárate et al (1998) proposed a
new representation for the cold rolling process based on a neural network structure in which
the sensitivity coefficients are obtained directly from the neural network weights. One
important feature of this approach is that it permits to eliminate the effects of the time delays
on the controller performance.

In this case, the network is trained with the rolling load, P, and the torque, T, chosen as
the desired outputs. Also, the neural network input training vector was built such that the data
sets include present and future values of the rolling mill parameter. Equation 11 shows the
input training vector.

[ ])()()()()()()(.. τµ += khkykktktkhkgvt ofri (11)

where τ  is the time delay which depends on the thickness sensor placement.
It should be noticed that each data set includes the present values of the rolling variables

at the moment of the roll gap deformation and the corresponding future value of the thickness
output. Thus, the new neural network based model is actually mapping set points at present
time with the resulting output thickness in the future. This mapping gives the neural model
the required predictive characteristics to implement the model predictive control law.

Figure 1 shows the block diagram used to obtain the sensitivity coefficients. Notice that,
in this case, the sensitivity coefficients are calculated directly from the network inputs and the
network weights (Zárate et al, 1998).
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Figure 1. The Neural Network Training Scheme to obtain the Sensitivity Coefficients.

3. THE PROPOSED PREDICTIVE CONTROL SCHEME

The performance of classical techniques for control systems design usually depends on
the existence of a good linear model of the plant dynamics in order to achieve an acceptable
design. The lack of a good model is still more compelling in the case of predictive control in
which a plant model is used to estimate, at the sampling instants, the process variables not yet
available.

In the case of rolling mill systems, the performance of classical model predictive control
is usually poor due to the complexity of the existing nonlinear models. Also a challenging
characteristic of those systems is the existence of usually large time delays in the control loop,
in rolling processes this happens especially at low strip speed.

A modern alternative to overcome these problems is the use of artificial intelligence to
face model uncertainty, time delays, and nonlinear plants. Neural networks have been recently
proposed as a solution for the control problem of some ill-conditioned processes [3-5]. They
have been successfully applied to those cases in which the plant dynamics causes a poor
performance of traditional control techniques.

This paper introduces a new control scheme that uses a predictive model proposed in
Zárate et al (1998) whose parameters are obtained directly from the weights of a trained
neural network as shown in Figure 1. To implement the control law, a predicted value of the

output thickness oĥ  is used instead of the current value of oh  which can not be measured

without the interference of a substantial time delay. This value is calculated from the
corresponding parameter values for each operating point.

It should be observed that a main feature of the proposed control scheme is the fact that
its predictive characteristic actually improves the plant stability. This can be seen by realizing
that at time t = 0 one can expect the error to be small, since using the predictor:
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on  the other hand, without the predictor:
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Thus, the heuristic argument is that with the inclusion, in the control loop, of the
proposed predictive scheme, the plant response would be smoother than without it.

The basic idea of using predictive control properties to compensate for closed loop time
delays has been previously presented in the technical literature (12). However, most of the
results have been for linear systems. In this work, the proposed neural network based model
predictive control is a general approach applicable to any linear and nonlinear system if exits
a good data base for the neural network training.

Figures 2 shows the proposed controller scheme. It should be noticed that, in this case,
the predictive model is being implemented as a virtual sensor whose output is the predicted
output thickness.

Finally, in cases in which some drift from the operation point (not considered in the
network training) is expected, an adaptive configuration may be used in order to allow the on-
line fine tuning of the predictor model as it is shown in Figure 3. In this case the neural
network will be kept learning and updating the sensitivity factors as the rolling process is
carry on.
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Figure 2. The Proposed Predictive
Controller.
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4. SIMULATION RESULTS

To verify the performance of the proposed scheme, the Alexander’s model (Alexander,
1972) was used to generate a data base for the cold rolling mill process. The neural network
has been trained using an average parameter variation of 15% around the equilibrium point.
The strip width was chosen as W = 900 mm, the absolute mill modulus as M = 400.000 and
nominal roll gap as g = 0.348 mm. For simulation purposes it was assumed the strip speed to
be constant and equal to 120 m/min. Also, it was assumed that the physical gap was always
positive and kept  in the [0, 5] mm range. And finally, the actual output thickness sensor was
assumed to be located 2 meters ahead from the roll gap. Table 1 presents the values for the
operation point used in the neural network training. Table 2 shows the nominal values for the
sensitivity factors (Equation 4) at the operation point.

Table 1.
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In this case, the plant and PD controller transfer functions are  given by:
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Figures 4 shows the open loop Bode diagrams of the plant. Notice that the gain and phase
margins are too small to achieve good performance with classical PID controllers. Finally,
Figure 5 presents the Bode of the plant with the PD controller given by Equation (6).

Figure 4. The Plant Bode Diagram. Figure 5. The Controlled Plant B.D.



It should be notice that in this case the phase margin is negative (less than -22 degrees at
approximately 9 rad/s)  and hence the closed loop system, without the predictor, would be
unstable.

To verify the controller performance, a roll gap step input at time t = 0 sec. and then a
perturbation step at time t = 50 sec. were applied. The perturbation signals were created by
modifying only one of the rolling parameters (Table 1) and keeping the remaining constant.

Figure 6 shows the output thickness response for a 5% increase in the input thickness at
time 50 s. It should be observed that the predictive controller kept the output thickness error
less than 1% and was able to reach steady state in less than 4 sec. Figure 7. Shows the gap
response for the same experiment.

Figure 8 shows the output thickness response for a 5% increase in the friction at time 50
s. In this case, the predictive controller kept the output thickness error less than 0.1% and was
able to reach steady state in less than 4 s. Figure 9 shows the gap response.

Figures 6. Output Thickness for 5% Input
Thickness Perturbation

Figure 7.  Gap Response for 5 % Input
Thickness Perturbation.

Figures 8. Output Thickness Response for
5% Friction Perturbation

Figures 9. Gap Response for 5% Friction
Perturbation



5. CONCLUSIONS

This paper presented a technique based on a neural network based predictive modeling
control structure that permitted to overcome the existing time delays in dynamic systems. The
technique was successfully applied to a rolling  process. It was verified through numerical
simulation that the dynamic response of such a system can be substantially improved by using
the proposed predictive controller.

The proposed  scheme implements, virtually, the thickness sensor which delivers an
estimation for the output thickness. Even though the predictive model uses sensitivity factors
calculated for some neighborhood of the operating point, it was observed  that, the control
system also performed well even for large deviations from that operating point. The analysis
and simulation showed that the obtained results are good enough for rolling process.

Finally, it was showed that including the predictor in the closed loop actually stabilizes
the system. The heuristic argument is that the dynamic behavior of the predictor system is
similar to that of lead controllers since it makes output information available in advance for
the control algorithm. The practical results is that the control signal is smother with the
predictor than without it.
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7. NOTATION

µ = Friction coefficient
y = Mean yielded tensile stress (kgf/mm2)
g = Gap (mm)
hi = Strip input thickness (mm)
ho = Strip output thickness (mm)
M = Mill modulus (kgf/mm)
P = Rolling load (kgf/mm)
R = Cylinder radio  (mm)
T = Torque (kgf-mm/mm)
tf = Front tension stress (kgf/mm2)
tr = Back tension stress (kgf/mm2)
W = Strip width (mm.)


